Security

FSI scholars produce research aimed at creating a safer world and examing the consequences of security policies on institutions and society. They look at longstanding issues including nuclear nonproliferation and the conflicts between countries like North and South Korea. But their research also examines new and emerging areas that transcend traditional borders – the drug war in Mexico and expanding terrorism networks. FSI researchers look at the changing methods of warfare with a focus on biosecurity and nuclear risk. They tackle cybersecurity with an eye toward privacy concerns and explore the implications of new actors like hackers.

Along with the changing face of conflict, terrorism and crime, FSI researchers study food security. They tackle the global problems of hunger, poverty and environmental degradation by generating knowledge and policy-relevant solutions. 

Paragraphs

The capture and permanent storage of CO2 emissions from coal combustion is now widely viewed as imperative for stabilization of the global climate.  Coal is the world’s fastest growing fossil fuel.  This trend presents a forceful case for the development and wide dissemination of technologies that can decouple coal consumption from CO2 emissions—the leading candidate technology to do this is carbon capture and storage (CCS). 

China simultaneously presents the most challenging and critical test for CCS deployment at scale.   While China has begun an handful of marquee CCS demonstration projects, the stark reality to be explored in this paper is that China’s incentives for keeping on the forefront of CCS technology learning do not translate into incentives to massively deploy CCS in power plant applications as CO2 mitigation would have it.  In fact, fundamental and interrelated Chinese interests—in energy security, economic growth and development, and macroeconomic stability—directly argue against large-scale implementation of CCS in China unless such an implementation can be almost entirely supported by outside funding.  This paper considers how these core Chinese goals play out in the specific context of the country’s coal and power markets, and uses this analysis to draw conclusions about the path of CCS implementation in China’s energy sector. 

Finally, the paper argues that effective climate change policy will require both the vigorous promotion and careful calculation of CCS’s role in Chinese power generation.  As the world approaches the end of the Kyoto Protocol in 2012 and crafts a new policy architecture for a global climate deal, international offset policy and potential US offset standards need to create methodologies that directly address CCS funding at scale.  The more closely these policies are aligned with China’s own incentives and the unique context of its coal and power markets, the better chance they have of realizing the optimal role for CCS in global climate efforts.

 

All Publications button
1
Publication Type
Working Papers
Publication Date
Journal Publisher
Program on Energy and Sustainable Development Working Paper #88
Authors
Richard K. Morse
Varun Rai
Varun Rai
Gang He
Gang He
-

Abstract
An accurate estimate of the ultimate production of oil, gas, and coal would be helpful for the ongoing policy discussion on alternatives to fossil fuels and climate change. By ultimate production, we mean total production, past and future. It takes a long time to develop energy infrastructure, and this means it matters whether we have burned 20% of our oil, gas, and coal, or 40%. In modeling climate change, the carbon dioxide from burning fossil fuels is the most important factor. The time frame for the climate response is much longer than the time frame for burning fossil fuels, and this means that the total amount burned is more important than the burn rate. Oil, gas, and coal ultimates are traditionally estimated by government geological surveys from measurements of oil and gas reservoirs and coal seams, together with an allowance for future discoveries of oil and gas. We will see that where these estimates can be tested, they tend to be too high, and that more accurate estimates can be made by curve fits to the production history.

Bio
Professor Rutledge is the Tomiyasu Professor of Electrical Engineering at Caltech, and a former Chair of the Division of Engineering and Applied Science there.  He is the author of the textbook Electronics of Radio, published by Cambridge University Press, and the popular microwave computer-aided-design software package Puff.  He is a Fellow of the IEEE, a winner of the IEEE Microwave Prize, and a winner of the Teaching Award of the Associated Students at Caltech.  He served as the editor for the Transactions on Microwave Theory and Techniques, and is a founder of the Wavestream Corporation, a manufacturer of high-power transmitters for satellite uplinks.

This talk is part of the PESD Energy Working Group series.

Richard and Rhoda Goldman Conference Room

Dave Rutledge Professor of Electrical Engineering Speaker Caltech
Seminars
Subscribe to Security