PESD releases new working paper on challenges to deployment of carbon capture and storage technology

Executive Summary

Carbon capture and storage (CCS) is a promising technology that might allow for significant reductions in CO2 emissions. But at present CCS is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. In this paper we draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development. Specifically, we analyze the development of the US nuclear-power industry, the US SO2-scrubber industry, and the global LNG industry.

We focus on three major questions in the development of these analogous industries. First, we consider the creation of the initial market to prove the technology: how and by whom was the initial niche market for these industries created? Second, we look at how risk-reduction strategies for path-breaking projects allowed the technology to evolve into a form so that it could capture a wider market and diffuse broadly into service. Third, we explore the "learning curves" that describe the cost reduction as these technologies started to capture significant market share.

Our findings suggest that directly applying to CCS the conventional wisdom that is prevalent regarding the deployment and diffusion of technologies can be very misleading. The conventional wisdom may be summarized as: "Technologies are best deployed if left in the hands of private players"; "Don't pick technology winners" or "Technology forcing is wrong"; and "Technology costs reduce as its cumulative installed capacity increases". We find that none of these readily applies when thinking about deployment of CCS.